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Abstract
The off-diagonal profile φb

od(v) associated with a local operator φ̂(v) (order
parameter or energy density) close to the boundary of a semi-infinite strip with
width L is obtained at criticality using conformal methods. It involves the
surface exponent xs

φ and displays a simple universal behaviour which crosses
over from surface finite-size scaling when v/L is held constant to corner finite-
size scaling when v/L → 0.

PACS numbers: 05.50.+q, 64.60.-i

The finite-size behaviour of order parameter or energy density profiles has been the subject
of much interest during the last two decades following the work of Fisher and de Gennes [1].
These profiles have been studied in the vicinity of the critical point in the mean-field
approximation [2], using field-theoretical methods [3] and through exact solutions [4,5]. Such
profiles display universal behaviour at criticality and in two-dimensional systems they can
be deduced from ordinary scaling and covariance under conformal transformation [6–17]. A
short review can be found in [18].

With symmetry-breaking boundary conditions, one may consider diagonal order parameter
profiles [6], i.e. ground-state expectation values. Otherwise, off-diagonal profiles can be used
with any type of boundary condition [13]. For the order parameter with Dirichlet boundary
conditions, off-diagonal matrix elements must be considered since a diagonal order parameter
profile then vanishes for symmetry reasons.

On a strip with fixed boundary conditions at v = 0 and L the diagonal order-parameter
profile φ(v) associated with an operator φ̂ takes the following form at criticality [6]:

φ(v) = 〈0|φ̂(v)|0〉 = A
[

L

π
sin

(πv

L

)]−xφ

0 < v < L. (1)

The exponent xφ is the bulk scaling dimension of φ̂; |0〉 is the ground state of the Hamiltonian
H = − ln T where T denotes the row-to-row transfer operator on the strip. When L → ∞ with
a fixed value of the ratio v/L, one obtains the bulk finite-size scaling behaviour φ(L) ∼ L−xφ .
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Figure 1. Conformal mapping of the half-plane y > 0 on the semi-infinite strip u > 0, 0 < v < L.

When L → ∞ while keeping v fixed, one obtains the profile φ(v) ∼ v−xφ on the half-plane
with fixed boundary conditions, which is a consequence of ordinary scaling. Actually the
profile on the strip in (1) follows from the profile on the half-plane through the logarithmic
conformal transformation w = (L/π) ln z [6].

The off-diagional critical profile with general symmetric boundary conditions at v = 0
and L is obtained as [13]

φod(v) = 〈φ|φ̂(v)|0〉 ∼
(

L

π

)−xφ [
sin

(πv

L

)]xs
φ−xφ

0 < v < L (2)

where |φ〉 is the lowest excited state of H leading to a non-vanishing matrix element. Besides
the bulk exponent xφ the off-diagonal profile involves the surface scaling dimension xs

φ of

the operator φ̂. It can be identified by considering the transformation of the connected two-
point correlation function Gcon

φφ (z1, z2) from the half-plane to the strip under the logarithmic
conformal mapping. For the order parameter with fixed boundary conditions, xs

φ = 0, and (2)
gives an off-diagonal profile in agreement with (1). When L → ∞, equation (2) shows the
crossover from bulk finite-size scaling φod(L) ∼ L−xφ when the ratio v/L is constant, to
surface finite-size scaling φod(L) ∼ L−xs

φ when v is constant, i.e. when v/L → 0.
Let us now consider a half-strip in the (u, v)-plane with 0 < u < ∞, 0 < v < L and

uniform boundary conditions. If one crosses the semi-infinite strip at u 
 L the behaviour
of the off-diagonal profile will be the same as for the infinite strip in equation (2). A different
behaviour is expected close to the boundary of the semi-infinite strip at u � L. The profile
should then involve the surface exponent xs

φ and, when v � L or L − v � L, the corner
exponent xc

φ .
In order to obtain the profiles on the semi-infinite strip, we consider the transformation

of the connected two-point correlation function Gcon
φφ (z1, z2) from the half-plane z = x + iy,

y > 0 to the half-strip w = u + iv, 0 < u < ∞, 0 < v < L as shown in figure 1. The two
geometries are related by the conformal transformation [6]

z = cosh
(πw

L

)
(3)

or

x = cosh
(πu

L

)
cos

(πv

L

)
y = sinh

(πu

L

)
sin

(πv

L

)
. (4)

Going from the half-plane to the half-strip, the dilatation factor is given by

b(z) =
∣∣∣∣ dz

dw

∣∣∣∣ =
∣∣∣π
L

sinh
(πw

L

)∣∣∣ = π

L

[
sinh2

(πu

L

)
+ sin2

(πv

L

)]1/2
. (5)
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At criticality, the form of Gcon
φφ (z1, z2) is strongly constrained by conformal invariance.

Using an infinitesimal special conformal transformation which preserves the surface geometry,
one obtains a system of partial differential equations for the connected two-point correlation
function on the half-plane, from which the following scaling form is deduced [19]:

Gcon
φφ (z1, z2) = (y1y2)

−xφ g(ω) ω = (x2 − x1)
2 + (y2 − y1)

2

y1y2
. (6)

We are mainly interested in the behaviour of the profile close to the boundary of the half-strip.
Thus we may consider the correlations between two points, the first close to the boundary
located at u = 0 and the second far from it:

u1

L
� 1 0 < v1 < L

u2

L

 1 0 < v2 < L. (7)

Considering (4) and (5) in the limits of equation (7) we have

x2 − x1 � 1

2
exp

(πu2

L

)
cos

(πv2

L

)
y2 − y1 � 1

2
exp

(πu2

L

)
sin

(πv2

L

)

y1y2 � πu1

2L
sin

(πv1

L

)
sin

(πv2

L

)
exp

(πu2

L

)

b(z1) � π

L
sin

(πv1

L

)
b(z2) � π

L
exp

(πu2

L

)
.

(8)

Thus the crossover variable ω defined in (6) takes the form

ω � L exp(πu2/L)

2πu1 sin(πv1/L) sin(πv2/L)

 1. (9)

In this limit, ordinary scaling leads to g(ω) ∼ ω−xs
φ so that, in the half-plane geometry,

Gcon
φφ (z1, z2) ∼ (y1y2)

xs
φ−xφ

[(x2 − x1)2 + (y2 − y1)2]x
s
φ

. (10)

The conformal mapping (3) leads to the correlation function in the half-strip geometry [20]

Gcon
φφ (w1, w2) ∼ b(z1)

xφ b(z2)
xφ Gcon

φφ (z1, z2). (11)

Making use of (8) in equations (10) and (11), we finally obtain

Gcon
φφ (w1, w2)∼u

xs
φ−xφ

1

[(
2π

L

)
sin

(πv1

L

)]xs
φ
(

L

π

)−xφ[
sin

(πv2

L

)]xs
φ−xφ

exp

(
−πxs

φu2

L

)
. (12)

In order to identify the different contributions to the two-point correlation function in (12),
we can rewrite it using the row-to-row transfer operator T on the strip with width L. The two-
point correlation function on the semi-infinite strip reads

Gφφ(w1, w2) = 〈B|φ̂(v1)T u2 φ̂(v2)|0〉
〈B|T u2 |0〉 =

∑
n〈B|φ̂(v1)|n〉 exp(−u2En)〈n|φ̂(v2)|0〉

〈B|0〉 exp(−u2E0)
(13)

where |0〉 is the ground state of H which is selected by the transfer from u = u2 to u = ∞
and |B〉 is a state vector appropriate for the boundary conditions at u = 0. In the case of
free boundary conditions, it describes the free summation over the boundary states. In the last
expression the summation is over the complete set of eigenstates |n〉 of H with eigenvalues
En.

The connected two-point correlation function is then obtained by subtracting the ground-
state contribution to the eigenstate expansion:

Gcon
φφ (w1, w2) = Gφφ(w1, w2) − 〈B|φ̂(v1)|0〉

〈B|0〉 〈0|φ̂(v2)|0〉

� 〈B|φ̂(v1)|φ〉
〈B|0〉 〈φ|φ̂(v2)|0〉 exp[−u2(Eφ − E0)]. (14)
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In the last expression we took into account the condition u2 
 L. In this limit, the eigenstate
expansion is dominated by the contribution of the lowest excited state |φ〉 of H for which the
matrix elements are non-vanishing.

Comparing with the conformal expression in (12), we can read the gap-exponent
relation [20] in the exponential factor, Eφ − E0 = πxs

φ/L, and the off-diagonal profile at
u2 
 L in agreement with equation (2). The remaining part can be then identified as the
boundary profile on the half-strip at u1 � L and we obtain

φb
od(v) = 〈B|φ̂(v)|φ〉

〈B|0〉 ∼
[π

L
sin

(πv

L

)]xs
φ

0 < v < L. (15)

In the case of the two-dimensional Ising model with free boundary conditions H is the
Hamiltonian of the Ising model in a transverse field; if one associates the Pauli spin operator
σx

l (l = 1, L) with the order parameter, then the boundary state vector |B〉 is explicitly given
by [21]

|B〉 =
∏

l=1,L

1√
2
(|σx

l = +1〉 + |σx
l = −1〉) =

∏
l=1,L

|σ z
l = +1〉. (16)

Both |0〉 and |B〉 are even under the operator P = ∏
l=1,L σ z

l [21]. In the expression of the
order parameter profile the state |φ〉 = |σ 〉, which contains a single fermionic excitation, is
odd under P . At l = 1, the order parameter profile coincides with the corner magnetization
obtained in [21]. The surface magnetic exponent is xs

σ = 1/2 [22]. For the energy density
profile the state |φ〉 = |ε〉 contains two fermionic excitations and is even under P . The surface
energy exponent is then xs

ε = 2 [23, 24].
When L → ∞ with a fixed v/L value, one obtains the surface finite-size scaling behaviour

φb
od(L) ∼ L−xs

φ while keeping v constant leads to the corner finite-size scaling behaviour

φb
od(L) ∼ vxs

φ L−2xs
φ v � L. (17)

Thus the corner exponent xc
φ(π/2) is given by 2xs

φ . This result is in agreement with the
general expression xc

φ(θ) = πxs
φ/θ for a corner with opening angle θ , which also follows from

conformal invariance [19, 21].
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